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From observations of swimming of the shell-less pteropod mollusc Clione antarctica
we compare swimming velocities achieved by the organism using ciliated surfaces
alone with velocities achieved by the same organism using a pair of flapping wings.
Flapping dominates locomotion above a swimming Reynolds number Re in the range
5–20. We test the hypothesis that Re ≈ 5–20 marks the onset of ‘flapping flight’ in
these organisms. We consider the proposition that forward, reciprocal flapping flight
is impossible for locomoting organisms whose motion is fully determined by a body
length L and a frequency ω below some finite critical value of the Reynolds number
Reω = ωL2/ν. For a self-similar family of body shapes, the critical Reynolds number
should depend only upon the geometry of the body and the cyclic movement used
to locomote. We give evidence of such a critical Reynolds number in our data, and
study the bifurcation in several simplified theoretical models. We argue further that
this bifurcation marks the departure of natural locomotion from the low Reynolds
number or Stokesian realm and its entry into the high Reynolds number or Eulerian
realm. This occurs because the equilibrium swimming or flying speed Uf obtained
at the instability is determined by the mechanics of a viscous fluid at a value of
Ref = Uf L/ν that is not small.

1. Introduction
Because of the difficulty of treating complex time-dependent geometries, theories

of natural locomotion in fluids generally utilize either low Reynolds number
approximations, applicable to micro-organisms, or the assumptions of inviscid fluid
dynamics supplemented by boundary-layer theory, applicable to insects, birds, and
fish. These two regimes are also distinct in terms of the observed mechanisms of
locomotion (Lighthill 1975; Childress 1981a; Dudley 2000). Reduced to its simplest
terms, locomotion in the Stokesian or low Reynolds number realm relies on the
diffusion of momentum, while that in the Eulerian or high Reynolds number realm
emphasizes the advection of momentum in highly structured vortical fields. In the
former, one thinks of non-reciprocal, cyclic boundary movements which can steadily
locomote the organism, whereas in the latter one envisages mechanisms for producing
thrust and lift through vortex shedding and interactions of the organism and its
appendages with the shed vorticity.
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Figure 1. Sketch of Clione antarctica (typical length 6mm) indicating three bands of cilia (c)
and the extended wings (pteropodia). Extreme positions of wings against body as sketched
from video, flapping frequency 2.25 cycles s−1. (a) Ventral perspective, the arrow indicating
the direction of body movement, and c the ciliary bands. (b) Anterior perspective.

However, numerous taxa locomote at characteristic Reynolds numbers in the range
1–100, corresponding purely to neither the Stokesian nor the Eulerian realm. A broad
diversity of aquatic invertebrate taxa (e.g. representatives in Crustacea, Chaetognatha
and other vermiform phyla, Mollusca, some larval as well as adult Insecta), as
well as many small flying insects, operate at such intermediate Reynolds numbers (e.g.
Walker 2002; McHenry, Azizi & Strother 2003). Equally important, many taxa transit
ontogenetically across this range (e.g. larval fish, many marine invertebrate larvae).
Such ontogenetic shifts mandate either loss of locomotor mechanisms (e.g. settling in
taxa that are sessile as adults) or their functional transformation. The mechanisms
of locomotion appropriate to this Reynolds number range thus do not fall fully
within the scope of either Stokesian or Eulerian theory, although presumably the
fluid mechanics is adequately described by solutions of the unapproximated Navier–
Stokes equations. What can be established with certainty (see the discussion of § 3) is
that reciprocal motions associated with the Eulerian realm, the simple up-and-down
movement of a flapping wing in forward flight, for example, fails to locomote in
the Stokesian realm. (We discuss below the meaning of reciprocal motion.) Thus,
the intermediate Reynolds number range is not only one where ciliary and flagellar
mechanisms give way to flapping flight, but also one in which reciprocal flapping
becomes a useful alternative.

The present discussion has been motivated by the opportunity we had in November
and December of 2000, while carrying out field work at McMurdo Station, Antarctica,
to observe the swimming behaviour of the pteropod Clione antarctica. These small
gastropod molluscs, which can be found in the waters beneath the ice of McMurdo
Sound, are equipped not only with bands of cilia but also with a pair of wings
(figure 1). As a result, they have two distinct modes of swimming. In ciliary mode
the wings are retracted into the body and the swimming is by metachronal waves
of movement around three bands of cilia encircling the body. The ciliary mechanism
is effective for locomotion at arbitrarily small Reynolds numbers. In flapping mode,
the wings are extended and flapped, the sequence of wing positions being indicated
qualitatively in figure 1. Although the organism is swimming, this mode, when
effective, can be appropriately described as ‘forward flapping flight’. We remark that
these specimens were not fully developed adults, and it should be understood that all
our results pertain to an early developmental stage of Clione antarctica.
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While in flapping mode, movements of cilia could often still be seen, to a degree
which varied considerably across the organisms studied, but our working hypothesis
is that some slight ciliary activity was always present. Remarkably, in experiments
described in the next section, we found that it was possible (at least for over two
dozen of the organisms we studied) to induce three distinct behaviours: the two
swimming modes just described, and a drift mode in which neither of the organelles
were used and the organism drifted under its natural buoyancy. (The drift mode was
important as a reference since these organisms can modify somewhat their natural
buoyancy.) It thus became possible to test the hypothesis that there should be some
transitional values of parameters determining when a flapping mode becomes more
effective to the organism than the ciliary mode, as measured by the absolute speed
of swimming. As we shall indicate below, the data are consistent with a hypothesis
that the swimming Reynolds number in flapping mode exceeds that of the ciliary
mode at values of Re of approximately 5–20 based on body length and swimming
speed.

In the present paper we shall describe these measurements of ‘bi-modal’ swimming,
and then, using simplified analytical models, one based upon Oseen’s approximate
equations of motion for a viscous fluid, another based upon a periodic array of
flapping wings, test the hypothesis that flapping structures should cease to be effective
in the production of thrust below a Reynolds number consistent with our observations.

Because of this failure of reciprocal flapping in the Stokesian realm, it is tempting to
assert that, for a given locomoting organism executing fixed reciprocal motions, there
must exist a fluid viscosity above which forward flapping flight becomes impossible.
The relative effectiveness of ciliary and flapping modes is a complex issue, involving
aspects of behaviour over which one has no control experimentally. There are however
several questions which the above assertion raises: (i) How can this critical viscosity
be translated into transitional values for the dimensionless parameters of the system,
from ciliary to flapping modes? (ii) How can this proposition be tested by our
observations of pteropod locomotion, when and if ciliary propulsion is also present in
the flapping mode? (iii) Can models of reciprocal flapping be found which exhibit the
bifurcation from rest to locomotion as viscosity is decreased, and which are consistent
with the observations?

Our primary goal in this paper will be to argue that the transition to flapping flight
actually occurs as a mathematical bifurcation with respect to a flapping Reynolds
number. That is, locomotion using reciprocal flapping can be regarded as resulting
from the instability of the system of the flapping body and the fluid medium,
initiated by a ‘push’ of the immobile flapping body, and ‘saturated’ in the state of
forward flight. Our discussion will refer to three distinct Reynolds numbers: Rec,f =
Uc,f L/ν being the swimming Reynolds numbers in ciliary or flapping modes, L being
body length; and Reω = ωL2/ν, a Reynolds number pertinent only to the flapping
mode. Reω will be our bifurcation parameter. The derived frequency parameter
σ = Uf /ωL = Ref /Reω will also be useful. The parameter Reω is distinguished by
being characteristic of a flapping body quite apart from whether or not locomotion
occurs, whereas Rec,f are derived parameters.

The paper is organized as follows: in the next section we summarize our Clione data
and examine it for evidence of transition and criticality. In § 3 we discuss the general
proposition of bifurcation to flapping flight in terms of the dimensionless parameters
and compare transitional swimming with the concept of a critical Reynolds number. In
§§ 4, 5, and 6 we consider several two-dimensional models of bifurcation to flapping
flight. Some general aspects of the bifurcation, and how it might be studied as a
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three-dimensional Navier–Stokes calculation, are considered in § 7. Finally, in § 8 we
summarize our results and discuss their relation to other problems and questions.

It is important to emphasize that, throughout this paper, we use the term ‘reciprocal’
in the context of low-Re fluid mechanics, e.g. Batchelor (1967); Lighthill (1975); Purcell
(1977); Childress (1981a). To define reciprocal motion, suppose that the flapping
mode consists of a periodic cycle through an ordered sequence of configurations,
a configuration being the set of points which instantaneously defines the surface
of the body. In reciprocal motion, this ordered sequence is indistinguishable from
the sequence obtained under time reversal of the flapping cycle. Thus a scallop,
which opens slowly and closes quickly, while in each case moving through the same
configurations, is a reciprocal swimmer. A reciprocal motion is identical under a
simultaneous one–one mapping and reversal in the direction of the time variable.
(The flexibility in timing of a movement will be useful to us in devising a tractable
analytical model.)†

Of course reciprocity of the motion does not guarantee that the organism will
locomote in any fluid, a situation which would imply an infinite critical Reynolds
number. Note also that we refer here to the configurations determined in free
locomotion of the body. In natural swimming and flying, the configuration of a
flapping body will in general depend upon the flow field which surrounds it, as
the body tissue reacts to the forces imposed by the fluid. In our discussion, when
referring to a untethered ‘reciprocal flapper’, we shall mean an organism executing a
fixed reciprocal motion while in free locomotion.

Finally, we stress that our focus on reciprocal motions is not meant to imply that
such motions are omnipresent in biology. On the contrary, most natural locomotion
seems to involve some non-reciprocity derived kinematically or morphologically.
However, by looking closely at the implications of reciprocity, we are able to isolate
a bifurcation which we suggest underlies the relative advantages of flapping flight,
even when some non-reciprocal motions are present.

2. Observations of swimming by Clione antarctica

Pteropods were collected using plankton nets, primarily through holes in the sea ice
near McMurdo Station, Ross Island, Antarctica. Sampling depths ranged from 10 to
60 m. Specimens were kept in seawater in a holding tank, where they would remain
active for up to four days. Our measurements of swimming velocity were performed
in an open cylindrical glass tank of radius 6 cm and height 9 cm. This tank was
immersed in a temperature-controlled water bath. The interior of the experimental
tank was fitted with a conical paper structure to facilitate placement of the pteropod
at the bottom of the tank. Pteropods would then ascend to the water’s surface. A
mirror oriented at 45◦ to the horizontal was used to record lateral views with a digital
video camera, which also recorded ascent from a top perspective. The (small) velocity
component normal to the plane of view could not be measured and was set to zero
in our data analysis. Video images were analysed to obtain head and tail positions
at two distinct times during a phase of swimming in flapping or ciliary mode, or of
buoyant drift, as well as the frequency of wing beating in flapping mode.

† There are generalizations of this reciprocity concept, involving symmetry operations other than
time reversal, which leave the fluid-dynamical problem invariant. An example is mirror symmetry
of the boundary motion, realized say by the circular movement of a straight filamentary appendage
so that it sweeps out the surface of a cone.



Flapping flight as a bifurcation 261

Runs in all three locomotion modes were recorded at water temperatures of
approximately −2 ◦C, 0 ◦C, and +2 ◦C, to examine the effect of temperature-based
viscosity change. The above runs were then repeated in seawater for which viscosity
had been modified by the addition of dextran, a high molecular weight carbohydrate
(average molecular weight 24500). Using falling ball viscometry, the fluid viscosity
could be estimated as (1.886 − 0.0595T )(1 + 1.3c), where T is temperature in ◦C
and c is the dextran concentration as a percentage of weight. Most runs were
at the concentrations c = 0 and 0.1. Thus viscosity varied by about 13% through
separate variations of temperature and dextran concentration. While relatively small,
this variation represents what occurs naturally for these organisms owing to small
temperature variation in the polar environment. The larger variation of the observed
swimming Re came from the experimental range of body sizes and swimming speeds.

We now describe the reduction of our data to obtain Re based upon body length
and speed of swimming. The latter was taken as the speed of the centre of the line
segment joining the point designated as the head to that designated as the tail. Let y

be the vertical coordinate, and x the horizontal coordinate in the plane of observation.
Upward drift velocities were dominated by the y-component and this was subtracted
from the y-component of velocity in cilia or flapping mode, to obtain a ‘buoyancy-
corrected’ swimming speed. The rationale for this depends upon the locomotion mode.
In flapping mode, we may regard the wings as generating thrust and thus adopt an
Eulerian view. In quasi-steady linearized airfoil theory, thrust is proportional to the
square of the flapping frequency, but is independent of the speed of locomotion. If the
approach speed is augmented by buoyancy, this gives a hydrodynamically unwanted
contribution which must be subtracted out. In ciliary mode, we adopt the Stokesian
view of envelope theory (see Blake 1971), which equates the effect of the ciliated band
to an effective ‘slip’ velocity at its outer extremity, and this velocity locally replaces
the no-slip condition at the body. The steady ciliary swimming velocity is that velocity
which makes the force on the body equal to zero when the flow is determined using
the modified boundary condition. The effect of a buoyancy force on this flow is
to increment the swimming speed in order to maintain force equilibrium, and this
increment must be subtracted to obtain the ciliary swimming speed of a neutrally
buoyant body. Of course, the actual Re range here is intermediate and we shall see
that fully unsteady conditions prevail, so that neither argument is exactly applicable.
Since the buoyancy correction is approximate, we shall exhibit uncorrected data as
well.

For each locomotion mode, three sets of kinematic measurements per individual
were made at each combination of temperature and viscosity. Final results for the
three runs under given conditions of locomotion mode, T , and c were averaged,
yielding a set of pairs (Ref , Rec) of the swimming Reynolds numbers in flapping and
ciliary mode for different individuals, temperatures, and dextran concentrations. For
the buoyancy-corrected data we plot these pairs and the associated linear regression,
in figure 2. The corresponding data uncorrected for buoyancy is shown in figure 3.

The 45 ◦ line in figures 2 and 3 would be the locus of points if flapping and ciliary
modes were equally effective at all Reynolds numbers. The data, however, clearly
indicate that swimming is faster in flapping mode for sufficiently high Re. At lower
Re, we offer two distinct possibilities. (a) If flapping mode is additive, in the sense that
ciliary activity is undiminished as the wings flap, the data should be close to the 45 ◦

line below some value of Re. (b) If flapping mode implies no ciliary activity, the data
should tend to (0,0) along a curve well above the 45 ◦ line. The considerable scatter
of the data reflects the uncertainty of buoyancy corrections, out-of-plane velocity
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Figure 2. Rc versus Rf for swimming of Clione antarctica, averaged data corrected for
buoyancy. The dashed line is the line Rec = Ref .
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Figure 3. Rc versus Rf for swimming of Clione antarctica, averaged data uncorrected for
buoyancy. The dashed line is the line Rec = Ref .

components, and possible contributions from ciliary activity in flapping mode. But
the most important source of error is probably the behavioural variability of the
pteropods themselves.

We pass immediately to a different presentation of the data most relevant to the
subject of the present paper. In figure 4 we show the observed Ref , using a swimming
velocity corrected for buoyancy, versus Reω. In order to focus on the lower Re, we
have discarded all data points lying outside the rectangle of figure 4. The data strongly
suggest a critical value of Reω, denoted now by Reωc, of close to 12. The indication
is that Ref is more strongly correlated with Reω that with Rec.
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Figure 4. Buoyancy-corrected Ref as a function of Reω = ωL2/ν = Ref /σ .
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Figure 5. The solid circles are values of σ −1 and Ref from observations of the flapping mode
of Clione antarctica. Both parameters are corrected for buoyancy. The open circles are for the
model of § 4.2, computed with k = 10, N = 10, and L = 1. The solid line is the hyperbola
Reω = 12, and the dashed line is the hyperbola Reω = 36.

Although figure 4 is the natural representation of a bifurcation to ‘flapping flight’,
we were initially interested in the transition from cilial to flapping locomotion, and
hence on the presentation of figures 2 and 3. We were led to consider the transition as
a bifurcation with respect to Reω by the following observation. If all the pteropods,
as well as their swimming movements, were geometrically similar, and if indeed the
only dimensionless parameters for the flapping mode were Ref and σ = Ref /Reω,
then we should expect that equilibrium swimming speed would be determined by a
curve in the (Ref , σ −1)-plane. In figure 5 we plot the Clione data in this way, both
parameters being corrected for buoyancy. It was noted that the data seemed to lie
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Figure 6. Scatter plot of swimming speed versus body size in ciliary mode.

above a hyperbola: Reω =constant> 0. This representation of the data, which brings
in Reω explicitly for the first time, gave the first indication of the existence of a
minimum or critical value of Reω for locomotion by reciprocal flapping. Indeed, Reωc

determines the hyperbola which approximates the curve of equilibrium swimming
speed in the limit of small Re. The hyperbolae shown in figure 5 in fact correspond
to the observed and model values of Reωc.

Perhaps the most important question concerning these observations is to what
degree the flapping mode of Clione is in fact reciprocal. We often saw slight lateral
undulations of the body in flapping mode, and the response of flexible bodies to
oscillating fluid forces is usually not reciprocal. We should note also that the wing
motion depicted in figure 1 involves considerable ‘body slapping’, particularly at the
bottom of the downstroke. It is important to point out in this connection that, while
motion effective in the Stokesian realm must be non-reciprocal, many non-reciprocal
motions also are not effective there. A flexible wing executing movements with
complete fore-and-aft symmetry is an example of this. We might well have expanded
the class of reciprocal flappers to include all unspecified ineffective movements,
without altering the conclusions drawn in §§ 3 and 7.

In spite of these and other sources of experimental error and deviation from the
ideal experiment underlying the above arguments, we take these data as evidence of
a critical value of Reω for Clione antarctica.

We suggest that the correlation in figure 4, as opposed to figures 2 and 3, can be
traced to the variability of the swimming velocities in ciliary mode. We show in figure 6
the raw data for the buoyancy-corrected swimming speed in ciliary mode versus body
length in ciliary mode. The scatter indicates a large variability of the individual level
of ciliary activity. Models of locomotion using ciliated surfaces (assumed to occupy a
fixed fraction of body surface) show that swimming speed is proportional to ΩKa2

where Ω, K are a frequency and wavenumber associated with the metachronal waves,
and a is a wave amplitude (Brennen 1975). It is not clear how these parameters scale
with body size. Figures 2–5 do suggest that the variability of the data resides in the
ciliary mode, and that the flapping mode becomes the more effective mode as the
swimming Reynolds number increases through the observed range.



Flapping flight as a bifurcation 265

3. Transition and criticality in flapping flight
The starting point for our discussion of bifurcation to flapping flight will be the

basic result that reciprocal motions cannot locomote in creeping flow, that is, in the
Stokesian realm. Having the image of a scallop opening and closing in a sequence
of configurations invariant under time reversal, we follow Purcell (1977) and refer to
our version of this result as the

Scallop theorem: If a flapper locomotes at arbitrarily small values of Ref and Reω,
its motion cannot be reciprocal.

As far as we know there has been no rigorous proof of this theorem based
upon the mechanics of a Navier–Stokes fluid and free-swimming body. An informal
demonstration of the result rests upon the fact that time is a parameter in the Stokesian
realm, a given body displacement producing an instantaneous corresponding dis-
placement of all points of the fluid. As the body cycles through configuration space,
the centre of volume cycles through displacements. The net displacement obtained
over one cycle changes sign under time reversal. Thus, if the motion is reciprocal, this
net displacement must be identically zero.

The existence of a critical value of Reω follows as a corollary to the scallop theorem.

Corollary: By changing the frequency ω of a given reciprocal flapper, let the swimming
Reynolds number Ref be observed as a function of Reω. Then there is a positive number
Reωc such that Ref (Reω) = 0 if Reω < Reωc.

We give an equally informal proof of the corollary, by first imagining an experiment
involving tethered flappers. Consider a collection of self-similar, reciprocal flappers,
each characterized by a length L and a frequency ω, and tethered in a uniform stream
of velocity U . By ‘tether’ we mean that the body neither translates nor rotates, and
flapping continues unabated as it is held in place.

Assume that there exist values of Re and Reω for which the time-averaged force
required to hold the organism in place points downstream, that is, net thrust is
generated. If the frequency of flapping is now decreased, so that Reω is decreased
while Re is held fixed, the mean force required to hold the organism must eventually
be directed into the oncoming stream, that is to say a drag is experienced, since
the motion becomes quasi-steady and the drag is essentially that of a static body.
Assuming a continuous dependence of force on Reω, there must exist a value of Reω

where the force vanishes for this Re, thus establishing conditions for equilibrium.
Repeating this experiment for all Re > 0, we construct a set of pairs (Reω, Ref ) for
zero force.

For untethered flappers we may perform a similar experiment. We may assume
that orientation is such that direction of motion is fixed and Ref � 0. For suitable
initial conditions, we assume that each flapper achieves a unique equilibrium speed.
We thus envisage an infinite set S of pairs (Reω, Ref ) for equilibrium locomotion,
defined for Reω > 0. Some of these may now involve a zero value of Ref .

To prove the corollary we consider

r = inf
S

{Reω|Ref > 0}. (3.1)

If r = 0, there must be an infinite sequence of pairs (Reωk, Ref k), k = 1, 2, . . . , with
Reωk → 0 as k → ∞, where locomotion is observed. But then we must also have
Ref k → 0 since otherwise we would have observed a finite speed of locomotion for
arbitrarily small values of Reω, which is unphysical.
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Thus, if r were zero, we have established that swimming would occur in the
Stokesian realm Reω, Ref � 1. By the scallop theorem, the motion cannot be recip-
rocal, which is a contradiction. Thus r ≡ Reωc > 0 and necessarily Ref = 0 if Reω <

Reωc. This establishes the corollary.
The precise form of the (Reω, Ref ) variation is largely unexplored in the range of

Reynolds numbers of interest to us here. Referring now to Clione antarctica, the body
moves in ciliary mode through the combination of movements of individual cilia, and
since these are not individually reciprocal (Lighthill 1975; Childress 1981a), the same
can be said for the body motion as a whole. The organism then swims at a speed
which depends upon the form of the cilia movements, their distribution over the body,
and upon the structure of the metachronal waves of cilia activity. The essential point
is that swimming occurs in fluids of arbitrarily large viscosity, assuming only that the
body movements can be maintained.

It is somewhat simpler conceptually to imagine that the cilia execute identical
movements with a fixed frequency ωcil, which has no relation to the frequency ω of
the wings, and is typically larger by a factor of 5–10 than the flapping frequency of
1–2 Hz that we observed for Clione. The swimming is then such that the advance
through the fluid over each cycle of motion is the same. Thus, there is a constant K

such that Rec = KReωcil
provided Reωcil

� 1.
For the case of the flapping mode, we can compare the situation where the wing

movement is not reciprocal to the ciliary mode, for then the advance at small Reynolds
number will again obey a scaling Ref = KReω for some K . Thus the key point is
that such a relation either holds, in which case the motion is not reciprocal, or else it
does not and a positive critical Reynolds number exists.

Note that we have not excluded the possibility that at some values of Reω exceeding
the critical value the rest state might again be globally asymptotically stable. We have
also not excluded the possibility that the instability may be subcritical, and a finite
‘push’ might lead to locomotion at values of Reω below the (linear) critical value
Reωc. However there will be a smallest value of Reω(Ref ), Re∗

ωc say, such that if
Reω < Re∗

ωc the rest state will be globally asymptotically stable with respect to the
starting configuration in the phase space of position and velocity.

The idea of a transition from one mechanism of locomotion to another can be
examined in an organism such as Clione, having both cilia and wings and the
ability to use them independently. We suppose, for the sake of argument, that the
two mechanisms are never used simultaneously. Then in ciliary mode, the scaling
Rec = KReωcil

holds so long as a Reynolds number associated with the cilia is small.
This can be accompanied by values of Rec of order unity, as is the case observed for
Clione. Thus, as body size increases and the bifurcation is reached, flapping flight can
occur simultaneously with ciliary locomotion and we can refer to transition Reynolds
numbers where both modes are accessible, as appears to be the case with Clione.

4. Oseenlet models
Since our data indicate that the flapping mode is more effective for the swimming

of Clione above Re in the range 5–20, it is of interest to examine theoretically the free
locomotion of bodies using flapping movements and operating in this range of Reω.
We shall study a number of simplified models. We should note that every reciprocal
flapper has, we claim, a particular value of Reωc (perhaps equal to infinity, if the
body does not locomote) determined by the geometry of the moving body up to
a similarity scaling. A particularly important aspect of this is the degree to which
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the body as a whole participates in locomotion, and what part does not participate
and contributes only to drag. A direct comparison of the values of Reωc obtained in
the disparate models we shall examine with those observed for the pteropods is thus
neither warranted or useful. Our aim will therefore be simply to verify in each case
the existence of a bifurcation.

In the present section we develop a linear theory of forward flapping flight based
upon the Oseen approximation. Our object is to illustrate the possibility of locomotion
by a flapping force field, and to study the dependence of the process upon the
parameters Reω and Ref .

We shall replace the appropriate Navier–Stokes equations by the linear Oseen
equations, modified by a damping term,

ut + σ ux + k−1u + ∇p − ε∇2u = F, ∇ · u = 0. (4.1)

Here we have taken the linearization to be about a dimensionless velocity σ =
Ref /Reω, and ε = Re−1

ω where L is an as yet unspecified reference length. We have
included in (4.1) an arbitrary force field force F(x, t). We shall restrict our calculations
to two dimensions, and allow F to be various distributions of time-dependent point
forces. The term k−1u is a non-standard modification equivalent to placing the flow in
a porous medium with permeability k. This term is introduced to improve convergence
of time integrals which appear below.

A linearization of this kind is of interest for the study of forward flight, where a
well-defined free stream makes some sense. Nevertheless, it should be born in mind
that it represents a rather drastic simplification of the advection of vorticity, advection
by the true velocity having now been replaced by advection with the free stream.
This can lead to errors in the position of vorticity shed from the body during active
flapping which are reflected in the forces experienced by the body. Also, at higher
values of Re, the boundary layers are not correctly described, although for planar
surfaces aligned with the free stream the penalty is not too severe.

It is convenient to utilize the following representation of the Oseen response to a
point force at the origin at time 0:

ut + σ ux + k−1u + ∇p − ε∇2u = f δ(x)δ(t), ∇ · u = 0, (4.2)

where f is a constant vector. With

ui =

[
δij ∇2χ − ∂2χ

∂xi∂xj

]
fj , p = −εfi

∂χ

∂xi

, (4.3)

we obtain from (4.2) that χ = e−t/kK(x − σ t i, t), where K(x, t) satisfies

∂∇2K

∂t
− ε∇4K = δ(x)δ(t). (4.4)

The general method we shall employ is superposition of fundamental solutions
generated by a moving point force. If the right-hand-side of (4.4) is replaced by, for
example, f (t) jδ(x − x0(t)) and we assume that χ(x, 0) = 0 then (4.3) applies with

χ(x, t) =

∫ t

0

f (τ )e−(t−τ )/kK(x − x0(τ ) − σ (t − τ )i, t − τ ) dτ. (4.5)
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4.1. Single oscillating Oseenlet

In two dimensions, we have from (4.4) and the requirement that K(0, 0, t) = 0 that

K(x, y, t) =
1

2π

∫ r

0

1 − exp[−s2/(4εt)]

s
ds, r =

√
x2 + y2. (4.6)

A related classical two-dimensional problem of interest in connection with (4.5) is
the calculation of the drag of a circular cylinder in steady flow at low Re, see
Lamb (1945, p. 609), as the limit of the time-dependent flow created by impulsive
motion. We outline this calculation in appendix A for the undamped Oseen theory.

In the present context we are interested in flapping motions and hence in Oseenlets
which are oscillating along lines perpendicular to the free stream. Suppose that a
point force of strength f (t) j is positioned at x = 0, y = sin 2πt . (The reference length
L is here taken as the flapping amplitude.) We now ask, taking this point force
as a simple ‘flapping wing’, the following question: what horizontal velocity U (t) is
induced at the instantaneous position of the force, and what is the limit for large t

of its average over one cycle starting from time t as a function of Reω and Ref? We
denote the latter limit by 〈U〉.

The thrust that occurs in flapping flight would be obtained as a mean upstream
component of U (t), the thrust resulting from the resistance presented by the moving
body, here represented by a point force. We are interested not so much in the
magnitude of an upstream component, but rather in how its magnitude changes as a
function of Reω and Ref . The critical curve in (Reω, Ref ) space is now defined by
zero average body force, or thrust =drag and so 〈U〉 = −1.

We shall assume here that f (t) = Cf ε2π cos 2πt , that is, the force is proportional
to velocity with a force coefficient Cf ε. A force coefficient ≈ 10/Re is reasonable for
steady flow past a circular cylinder at these intermediate Reynolds numbers. Here we
shall choose Cf to be large enough to establish a convenient critical value of Reω. In
effect we are considering a fictitious body of sufficiently high drag to allow the study
of locomotion in this linear model.

We then have the explicit expression

〈U (t)〉 = −2Cf

Reω

〈∫ t

0

cos 2πτ
XY

R4
e(τ−t)/k[1 − (1 + N )e−N ] dτ

〉
, (4.7)

where X = σ (t − τ ), Y = sin 2πt − sin 2πτ , R2 = X2 + Y 2, N = ReωR2/[4(t − τ )]. The
time integral is convergent at τ = t , and as ε → 0 is dominated by the contribution
there and has a finite limit. Note that the damping term e(τ−t)/k assists convergence
at large t by decreasing the influence of distant wake vorticity.

We show in figure 7 the result of calculations with values Cf = 41, k = 2.5, which
makes Reωc = 5. The critical curve is shown. We thus may conclude that an oscillating
vertical point force provides a simple qualitative model of flapping flight illustrating
bifurcation from the state of rest. The shape of this surface is a result of advection
(with the free-stream velocity) of the vortical component of the Oseen solutions.
At higher Reynolds numbers this component lies at any time in the vicinity of a
sinusoidal curve extending downstream from the position of the oscillating point. The
summed effect of these vortices at the point determines U (t). As Re decreases, this
vortical structure becomes more diffuse and U diminishes.

4.2. Approximate two-dimensional wing model

We consider a calculation which develops further the representation of oscillating
point forces in the Oseen model. Our goal is to approximately calculate the force
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Figure 7. Surface plot of −〈U〉 as a function of 2Reω and 2Ref for an oscillating Oseenlet
with position u = sin 2πt , see § 4.1 The damped Oseen model is used here with k = 2.5. The
drag coefficient is set to make Reωc = 5. Bifurcation to flapping flight occurs when 〈U〉 = −1.
The function Ref (Reωc) is indicated by a solid line, representing the intersection of the surface
with the plane −〈U〉 = 1.

rather than to simply impose it. We make use of N identical point forces, uniformly
distributed in the interval I : 0 � x � L, all at vertical position y = sin ωwt . (Again
the reference length is taken as the flapping amplitude.) We assume identical forces of
the form F = 2πf0 cos 2πt j with f0 a free parameter. We choose f0 by the condition
that the coefficient of the cos 2πt harmonic, of the instantaneous spatial average over
I of the vertical velocity component, be equal to the maximum vertical velocity 2π
of the point forces. This is an approximate attempt to partially satisfy boundary
conditions on a solid planar surface.

We define U as the average over I of the contributions to the induced horizontal
velocity from all N points, averaged as before over a cycle and evaluated for large t .
Since this operation involves an x-integral of χxy we have

U = f0

〈∫ t

0

1

N

N∑
k=1

2π cos 2πτ [χy(L(k − 0.5)/N − L − σ (t − τ ), sin 2πt − sin 2πτ , t − τ )

− χy(L(k − 0.5)/N − σ (t − τ ), sin 2πt − sin 2πτ , t − τ )] dτ

〉
. (4.8)

The condition on f0 is then

π = −f0

L

〈
cos 2πt

∫ t

0

2π cos 2πτ [2F (0, t, τ ) − F (−L, t, τ ) − F (L, t, τ )] dτ

〉
, (4.9)

where

F (x, t, τ ) = χ(x − t + τ, sin 2πt − sin 2πτ , t − τ ). (4.10)
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y = 2〈Y 〉
A B

C D
y = 0

Y (t)

y = –2 〈Y 〉

Figure 8. The venetian blind model. The flow is horizontal. The oscillations are as shown by
the arrows. The horizontal dotted lines are invariant streamlines of the flow field.

We have calculated three pairs (Reω, σ ) where U = −1, for L = 1, ω = 2π, k = 10,
and have included these points as the open circles in figure 5. Note that the general
trend of the observational data is obeyed by this model. The calculations indicate
Reωc = 33.

5. The flapping venetian blind
We consider now a two-dimensional viscous flow model which allows an approx-

imate calculation of the critical Reynolds number Reωc in a particular if somewhat
artificial case. The ‘flapper’ is an infinite vertical periodic array of oscillating pairs of
identical horizontal flat plates, which we shall call slats, all of chord unity, as shown
in figure 8.

Each pair of slats oscillates in the vertical and in opposition, thus establishing
reciprocal motion with a spatial period δ, equal to twice the average vertical spacing.
The array might therefore be described best as an ‘flapping venetian blind’. The model
arose after first considering a single pair of plates, or a ‘flapping biplane’, the motion
of the two wings against each other giving a crude model of the ‘body slapping’ seen
in Clione. The advantage of periodic extension will be apparent below.

We suppose the array of wing pairs is the set

−1/2 � x � 1/2, y = 3k〈Y (t)〉 ± Y (t), k = 0, ±1, ±2, . . . ,

|Y − 〈Y 〉| < 〈Y 〉,

}
(5.1)

where 〈·〉 denotes the time average. Note that δ = 2〈Y 〉.
We may assume that Y (t) is periodic with period 1, and place a condition on its

symmetry:

Y (t + 1) = Y (t), Y (t + 1/2) = δ − Y (t). (5.2)
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Examples are Y = 〈Y 〉(1 + a cos 2πt), 0 < a < 1, or, in § 5.1,

Y =

{
δ if 0 < t < 1/2,
0 if 1/2 < t < 1,

(5.3)

which we refer to as a square-wave cycle. With this symmetry the lines y = 〈Y 〉
mod 2〈Y 〉 = δ/2 mod δ are invariant streamlines of the flow, allowing us to effectively
isolate a single slat within two invariant streamlines. We shall refer to the strips
0 < y < Y and Y < y < δ as channels associated with the slat having mean position δ/2.

The dimensionless velocity at infinity will be σ . Thus the strip 0 < y < δ, bounded by
horizontal streamlines, will carry a fixed fluid flux σδ. At each instant of time, this flux
must be divided into a part q(t) carried by the channel 0 < y < Y , and a part σδ−q(t)
carried by the channel Y < y < δ. We refer to these as (net) channel fluxes even though,
as a result of the slat motion, the velocity and flux within a channel will vary with x.

We are interested in calculating the fluid motion which is generated when this
system of planes is placed in a fixed uniform stream of viscous fluid. We show, under
conditions to be described, that there is a unique value of Reω such that, at this value,
the force per unit area exerted by the fluid upon the array, in the cross–flow plane,
vanishes. Further, we shall find that, within the approximations we make, the force is
zero at any free-stream velocity consistent with our assumptions, provided only that
sufficient power is provided to maintain the oscillation of the blind.

In our model, δ is the aspect ratio of the rectangle formed by a pair of adjacent
plates held in their mean positions. We make the basic assumption that δ � 1. This will
allow us to calculate the action of two adjacent slats on the fluid between them as if
they were infinite planes. We shall examine two approaches to calculation of a critical
value of Reω. We note first that if δ2Reω � 1 then at all instants of motion a Poiseuille
channel flow is established over most of the channels between slats. If simultaneously
δReω � 1, then within a distance of order δ of the ends of the slat, inviscid dynamics
is obtained. Thus we can envisage an expansion for small δ2Reω which is based
upon perturbed Poiseuille flow with entry and exit conditions determined by an
inviscid problem. We shall indicate in § 5.2 how such an expansion proceeds. The
main drawback of this approach is that a Reωc should satisfy δ2Reωc = O(1), which
means that the accuracy of a calculation of Reωc from a truncation of the expansion
is questionable.

A second approach is to assume δ2Reω � 1, so that the flow throughout the
channels may be taken as approximately inviscid. In § 5.1 we consider this limit and
show that it is consistent with the calculation of Reωc provided that the wing motion
is instantaneous between its extreme positions (square-wave cycle). This motion will
allow us to separate the flow analysis into a fast inertial phase where viscosity may
be neglected, and a ‘stasis’ where the slats are held fixed and viscous diffusion of the
momentum occurs. We shall find that Reωc = O(δ−3) up to logarithmic terms.

A final limiting case worth consideration is where both δ and δReω are small. Then
Stokes flow prevails throughout, and we may make use of the principle of minimum
viscous dissipation, see Batchelor (1967).† In this limit the dissipation is obtained by
assuming Poiseuille flow over the entire length of a channel. This is easily minimized
for given flux to obtain a flux through the channel 0 < y < Y given by

q(t) =
δY 3

(δ − Y )3 + Y 3
. (5.4)

† We thank J. B. Keller for suggesting this calculation.
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The time-averaged drag per slat is then

〈D〉 = Re−1
ω 〈6δY [(δ − Y )3 + Y 3]−1〉, (5.5)

which is a quantity of order Re−1
ω δ−1.

5.1. Analysis of the model with square-wave cycle

Since we assume that δ � 1 and that the ‘blind’ moves in a square-wave cycle, the
flow within a slat pair can be treated neglecting entry and exit effects, that is, as if the
channel were doubly infinite. We shall also neglect any effect of vorticity shed into
the external fluid. This is reasonable because the motion of slat pairs is such that two
vortices of opposite circulation are shed simultaneously. We further note that in this
section the pressure is made dimensionless by division by density times L2ω2.

5.1.1. The inertial phase

Suppose that at t = 0 two slats lie on top of each other at y = δ mod 2δ. We
take the flow field in the region |y| < δ to be U (y), some even function of y with
U (±δ) = 0. Since σδ is the dimensionless mass flux through the blind, we must have∫ δ

0

U (y) dy = δσ. (5.6)

Were U to be a Poiseuille channel flow, it would be given by U = 3
2
σ (1 − (y/δ)2).

In the inertial phase slats at y = ±δ abruptly move to y = 0. We thus refer to
the terminal time of this phase as t = 0+. During this movement, the fluid between
the slats is squeezed out, and the vorticity of the initial flow is advected inviscidly.
Simultaneously the fluid fills the expanding channel bounded between the two slats
initially at y = δ. We will consider the fluid flow within the region 0 � y � δ, divided
into the ejection channel 0 � y � Y and the injection channel Y � y � δ. As the slat
at δ moves to y = 0, a flow field (−Ẏ x/Y, Ẏ y/Y ) in the ejection channel advects the
initial vorticity toward the line y = 0. Thus during the inertial phase the flow in the
ejection channel is given by the following exact solution of Euler’s equations:

u = − Ẏx

Y
+

Y

δ
U

(
yδ

Y

)
+ u1, (5.7a)

v =
Ẏ y

Y
, p =

Ÿ (x2 − y2)

2Y
− Ẏ 2

Y 2
x2 + u1

Ẏ

Y
x − u̇1x (ejection). (5.7b, c)

We have allowed here for a uniform flow u1(t), but will argue below that this term
must vanish if the flow field is to represent correctly the effects of viscosity.

Similarly, in the injection channel Y < y < δ the filling flow has the form
(Ẏ x/(δ − Y ), −Ẏ y/(δ − Y )). As the slats separate we assume that a uniform flow
(u2(t), 0), u2(0) = 0 is present to compensate for the flux no longer carried by the
ejection region. The corresponding Euler flow will have the form

u =
Ẏ x

δ − Y
+ u2(t), (5.8a)

v =
Ẏ (δ − y)

δ − Y
, (5.8b)

p =
Ÿ (x2 − (y − Y )2)

2(δ − Y )
− Ẏ 2

(δ − Y )2
x2 − u2

Ẏ

δ − Y
x − u̇2x + p2(t) (injection). (5.8c)
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During the collapse, the sum of the mass fluxes in the two sections must equal σδ:

Y 2

δ2

∫ δ

0

U (s) ds + u1Y + u2(δ − Y ) = σδ. (5.9)

Now we know that the integral on the left of (5.9) equals σδ. Thus

u1Y + u2(δ − Y ) = σδ(1 − Y 2/δ2). (5.10)

We now introduce a basic assumption which will in effect fix the circulation carried
by a slat and determine a unique flow field. We assert now that u1(t) = 0, that is, that a
uniform flow cannot be established in the ejection region, although the corresponding
flow u2 can be established in the injection region. The idea is that, since vorticity
within the flow is being expelled in the ejection region, the vorticity bound to the
slat cannot be changed from the ejection side. The difference in the treatment of the
uniform flow in the two regions is reminiscent of the difference, in a large tank of
viscous fluid, between the injection of fluid at a jet, and its withdrawal at a sink. This
condition, which we shall refer to here as the outflow principle, sets the flux in the
ejection region at q(t) = σY 2/δ, and that in the injection region as σδ(1 − Y 2/δ2). If
we focus on the region 0 < y < Y , then we have that q(t) = σY 2/δ when Ẏ < 0 and
q(t) = σ (2Y − Y 2/δ) when Ẏ > 0. Thus the outflow principle implies

q(t) = σ [Y + sgn(Ẏ )Y (1 − Y/δ)]. (5.11)

When compared with (5.4), we see that (5.11) introduces non-reciprocal fluid dynamics
into a problem with reciprocal boundary motion, as a result of the asymmetric effects
of viscosity at high local Reynolds numbers. Whenever (5.11) applies, we adopt
movements such a the square-wave cycle, consisting of two abrupt motions, one up
and one down, over a single cycle.

We proceeded to calculate, with assumption (5.11) on q , the x-force experienced
during the inertial phase. Since our calculation at this point is for an inviscid fluid
having no embedded vortex sheets, the only source of an x-force will be suction
forces associated with vorticity singularities at the tips of the slat, and to compute
these suction forces we must consider the flow in the vicinity of the entrance and exit.
The only reasonable calculation that can be done is for irrotational flow, hence we
replace the parallel flow U (y, t) by a uniform flow with the same flux, U (t) = σY/δ.
The entire inertial flow is now irrotational. Of course for flat-plate slats the suction
singularities replace the viscous stresses created by the vorticity shed from the slat
tips in the real fluid.

We show in figure 9 a conformal map from the ζ -plane to the physical z-plane,
the latter representing the left (entry) region of a channel, the slat being taken as
semi-infinite. The mapping (see e.g. Churchill 1948) is given by

z =
δ

π
[C − k log(ζ + 1) − (1 − k) log(ζ − 1)], C = k log

(
y

1 − k

)
+ log 2(1 − k) + iπ.

(5.12)

The point A in the ζ -plane is (ξA = 2k − 1, 0). The parameter k is defined by kδ = Y ,
and the argument of the logarithm is between −π and +π.

The flow field for the problem we study is given by

u − iv = σ − Ẏ

π
log

(
ζ − 1

ζ + 1

)
+

2K

ζ − ξA

, (5.13)
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Figure 9. A conformal map of the entry region of a channel. The point A′ is the left edge of
the slat, and D′C′F′E′ outlines its channel. The domain is the upper half of the ζ -plane.

where K is a free constant. The term proportional to Ẏ accounts for the motion of
the slat. The term proportional to K allows cancelling fluxes in the injection and
ejection channels, and essentially fixes the circulation of the slat.

To evaluate K it we consider the limit ζ → −1. Then z → ∞ and

u − iv = σ +
Ẏ

πk

[
k log

(
k

1 − k

)
+ log(1 − k) − πz/δ

]
− K

k
+ o(1). (5.14)

We thus require

σY

δ
= σ +

Ẏ

πk

[
k log

(
k

1 − k

)
+ log(1 − k)

]
− K

k
, (5.15)

or, using δk = Y ,

K =
σY

δ

(
1 − Y

δ

)
+

Ẏ

πδ

[
Y log

(
Y

δ − Y

)
+ δ log

(
δ − Y

δ

)]
. (5.16)

Consider now the singularity at the point A′ of the z-plane. If the vortex sheet
strength γ (x) has a singularity of the form 2αx−1/2 as x → 0+ then there is a tip
suction force of magnitude πα2, see e.g. Durand (1963, p. 52). Near the point A
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in the ζ -plane we have u = γ /2 ≈ 2K/(ζ − ξA), and we find from (5.12) the local
approximation

z − kδi =
δ

8πk(1 − k)
(ζ − ξA)2. (5.17)

Thus

πα2 =
K2δ

2k(1 − k)
. (5.18)

To consider the two ends of a slat, we may take the difference of the two values of
K2 obtained with ±Ẏ used in (5.16). The dominant expressions cancel and we are left
with net suction force

S =
2δ

k(1 − k)

σY

δ

(
1 − Y

δ

)
Ẏ

πδ

[
Y log

(
Y

δ − Y

)
+ δ log

(
δ − Y

δ

)]

= − 2

π
σ Ẏ

∫ δ

0

Y log Y + (δ − Y ) log(δ − Y ) dY

=
σδ2

π
(1 − 2 log δ). (5.19)

5.1.2. The viscous phase

We now consider the viscous phase. Since the inertial phase is taken as
instantaneous, and we are describing one-half of a full flapping cycle, the viscous
phase will last time 1/2. We consider the region 0 <y < 2δ, bounded by two now
stationary slats. During the inertial phase this region was filled by an inrush of
fluid, which we take to be irrotational. At t =0+ a flux of 2σδ is carried by this
channel, so the initial velocity will be given by u = u0 = σ . Subsequently we have
(u, v) = (u(y − δ, t), 0) where u(y, t) satisfies

ut − 1

Reω

uyy = Π (t), u(−δ, t) = u(δ, t) = 0,

∫ δ

0

u dy = σδ. (5.20)

The solution has the form

u =
3

2
σ

[
1 −

(
y

δ

)2]
+

∞∑
n=1

an exp
(
−λ2

nt
/
Reω

)
φn(y) (5.21)

where φn = cos (λny) − cos (λnδ), kn = δλn are the positive roots of tan z = z arranged
as an increasing sequence, and

an

∫ δ

0

φ2
n dy = σ

∫ δ

0

φn

(
1 − 3

2

[
1 −

(
y

δ

)2])
dy. (5.22)

One finds easily

an = 2σ/(kn sin kn). (5.23)

Twice the time integral from t = 0+ to t = 1/2 of the total viscous force exerted at
|x| < 1/2, y = δ− is obtained from (5.21) as

D = δσ

[
3

2δ2Reω

+ 2

∞∑
n=1

k−2
n

(
1 − exp

(
−k2

n

/
(2δ2Reω)

)]
. (5.24)

Note that (5.21) may be evaluated at t = 1/2 to get the function U (y) which should
actually begin the inertial phase.
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δ Reωc

1 9.23
0.5 28.2
0.25 162

Table 1. Critical Reynolds number for various δ for the venetian blind flapper
in square-wave mode.

5.1.3. The critical Reynolds number

The critical Reynolds number is obtained by equating the drag D to the suction
force S, which yields the following equation for δ2Reωc:

δ

π
(1 − 2 log δ) =

[
3

2δ2Reωc

+ 2

∞∑
n=1

k−2
n

(
1 − exp

[
−k2

n

/
(2δ2Reωc)

])]
. (5.25)

We show some values of Reωc in Table 1.
The square-wave cycle has been analysed under several assumptions which disregard

certain important real fluid effects. (i) Our replacement of U (y), with U (δ−) = 0, by
a uniform flow tends to alter the flow near the tips in a manner which should
probably decrease the suction force. We therefore surmise that the actual profile will
lead to a reduction in Reωc. (ii) It clear that in a real fluid and for a thin slat, the
suction force computed here as an implied pressure force must be replaced by viscous
stresses created at the walls by shed vorticity, see Batchelor (1967, p. 439), Wang
(2000), and the discussion below. The venetian blind model in a real fluid is useful
for understanding viscous thrust generation since the shed vorticity is firmly confined
between the invariant streamlines of the channels. (iii) Some vorticity ejected upstream
by the collapse of a channel can be drawn into the adjacent injection channels. The
appropriate problem for the inertial phase would allow for a rotational inviscid flow.
For simplicity we have neglected this effect and taken u2 as a uniform flow.

5.2. Formal expansion in δ2Reω

As a second approach to computing a critical Reynolds number for the flapping
venetian blind, we have investigated the formal expansion of the flow in powers of
Reω, an expansion which can be written as an expansion in δ2Reω. If this latter
parameter as well as δ is small, then to a first approximation the flow established
within |y| < Y is a Poiseuille channel flow with negligible entry and exit effects. We
also must assume that Y (t) is a smooth function of time, so the slat motion of the
square-wave analysis is excluded. We have noted above that, since δ2Reωc should be
of order unity, we are faced with using a truncation of an expansion without control
of the error. Nevertheless it is of interest to see what results are obtained since the
approach is in a sense opposite to that used for the square-wave cycle.

This calculation is straightforward and is summarized in Appendix B. There arises
again the issue of indeterminacy of the division of flux between injection and ejection
regions. Let q(t) be the mass flux in the channel 0 < y < Y , so q(t + 1/2) is the mass
flux in the channel Y < y < δ. Then the imposition of a fixed flux through the blind
imposes the condition

δσ = q(t) + q(t + 1/2). (5.26)

The two functions on the right are independent of each other and cannot be
determined without some knowledge of the entry flow. We remark that momentum
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Figure 10. δ2Reωc versus flapping amplitude a for the venetian blind in sinusoidal motion,
as computed by expansion in δ2Reω up to three terms.

conservation does not supply an additional relation, since the pressure downstream
of the blind is a function of time, related directly to the instantaneous drag per unit
area acting on the blind, see Appendix B. Momentum conservation through the entry
serves only to determine the entry value of the static pressure.

To proceed further we must therefore assume δReω � 1 so that the outflow principle
applies, with q given by (5.11). We then set Y = δ(1+ a cos(2πt))/2, and the following
equation for the average drag 〈D〉 results:

δReωσ −1〈D〉 =
6√

1 − a2
− 18

35
aδ2Reω − 0.1216a2δ4Re2

ω + O
(
δ6Re3

ω

)
. (5.27)

Note that the term of order δ2Reω arises here because of the non-reciprocal flux
function. If we truncate the series at this order, we obtain the values of Reωc shown
in figure 10.

For a ≈ 0.9 the values of Reωc obtained here are close to the values for the square-
wave cycle. They are larger than but not inconsistent with the observations of Clione,
and the general shape of the curve suggests the importance of ‘body slapping’ for the
reduction of Reωc. If we take Reωc = 9/δ2 with δ = 1 to simulate body slapping as
an ‘image’ slat, and take the body length to be twice the chord, then the Reωc based
on wing chord would be about 33. Allowing for three-dimensional effects as well as
the body drag, our number is well above the 5–20 range of Clione. We are using a
severely truncated expansion, and a numerical simulation of the venetian blind model
for various Reω and δ will be needed to pin down precisely Reωc(δ) in this model.

6. A Navier–Stokes calculation of Reωc in two dimensions
Recent calculations of flapping flight in two dimensions by Jane Wang have utilized

a high-accuracy Navier–Stokes code at Re of order 1000 (Wang 2000). The wing is
of thin elliptical section. Wang has generously carried out for us some preliminary
calculations with this code at lower Reynolds numbers for sinusoidal vertical motion
with an amplitude of one-half the wing chord (total vertical wing excursion= wing
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Ref Reω Drag

16 32 −3.46
16 16 −0.066
16 8 1.01
32 32 −1.22
32 16 0.46
32 8 0.75
64 64 −6.62
64 32 0.02
64 16 0.41
64 8 0.5

Table 2. Drag calculations for Navier–Stokes flow past an flapping thin ellipse,
amplitude of one-half chord.

chord). In these calculations, the reference length for the Reynolds numbers is the
wing chord. The results are shown in table 2.

These values indicate Reωc ≈ 15, and that the bifurcation is supercritical. This
number can be compared to the Reωc of 36 for the model Oseen model of a wing
at an amplitude equal to the chord. Not surprisingly, the Oseen model considerably
overestimates Reωc for flapping flight, probably more a result of the approximate
force calculation than the Oseen linearization. On the other hand the value 15 agrees
reasonably well with the venetian blind model in the square-wave cycle with δ = 1,
provided that slat interaction enhances thrust.

7. General considerations in three dimensions
We consider now the form taken by solutions of the Navier–Stokes equations for

a general reciprocal flapper in three dimensions, given that a finite critical Reynolds
number for flapping flight exists.

For simplicity we assume that the reciprocal motion is such that the centre of
volume remains on the line y = z = 0, that it remains at x = y = z = 0 when placed
there without an initial x-velocity and, once flapping flight takes place, is located at
(x, y, z) = (X(t), 0, 0) (we can accomplish this, for example, with a ‘flapping biplane’).
Let the time-dependent (dimensionless) flow velocity for the flapping body sitting at
rest be v0(x, y, z, t; Reω), where v0 is periodic in time with period unity. We shall for
convenience assume that Reω is changed by altering the viscosity.

Let σ (t) = dX/dt denote the (small) instantaneous dimensionless velocity. We take
δReω ≡ Reω − Reωc and σ (t) to be small, and assume that the latter changes slowly.
Let σ (0) = σ0 > 0 determine the initial releas velocity of the flapper. According to
Newton’s laws of motion, following release the total momentum of body and fluid,
relative to coordinates at rest with respect to infinity, must remain constant and equal
to the initial x-momentum of the body, σ0m say, where m is the body mass:

Mb + Mf = σ0m = mσ (t) + Mf . (7.1)

Thus

m
dσ

dt
= −dMf

dt
= Ff (7.2)
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where Ff is the force exerted on the body. In the region of the bifurcation we divide
this force into two parts which can be regarded as thrust T and drag D,

m
dσ

dt
= T − D, (7.3)

which shall now define and compute quasi-steadily and adiabatically by placing the
flapper in a fixed wind and taking T and D as averages over one cycle of motion.
We shall also assume the bifurcation is supercritical.

Let vc(x, y, z, t) be the velocity perturbation caused by placing the flapper, operating
at critical, in the wind. The problem satisfied by vc is then

Reωc

[
∂vc

∂t
+ σ

∂vc

∂x
+ vc · ∇vc

]
+ ∇pc − ∇2vc = 0, (7.4a)

vc|B(t) = −σ i, vc|∞ = 0. (7.4b)

Here B(t) denotes the body surface. Since the bifurcation is supercritical, the average
force experienced when operating at critical is drag, so vc determines the D(σ ) in
(7.3). Its expansion for small σ contains no term linear in σ , so

D = o(σ ), σ → 0. (7.5)

Now let the solution for Reω = Reωc + δReω be v = vc + δv. Now δv satisfies an
analogous problem with null conditions on the same body surface B(t). The linear
equation satisfied by a small δv is

Reωc

[
∂δv

∂t
+ σ

∂δv

∂x
+ δv · ∇vc + vc · ∇δv

]
+ ∇δp − ∇2δv = −δReωvc · ∇vc. (7.6)

Thus δv = O(δReω) and the corresponding force will have a term linear in σ , which
is the thrust developed above the critical value of Reω. This determines T in (7.3).
We then obtain an equation of the form

m
dσ

dt
= c1(Reω − Reωc)σ − D(σ ), (7.7)

which is consistent with what we see in figure 5 if D(σ ) = O(σ 2). The leading term of
D should depend on body shape, and in general we expect D = O(σ 2), but we have
not ruled out that the leading term could be O(σ 3) in some cases. It is not clear from
figure 7 what asymptotic behaviour is obtained for the oscillating Oseenlet, although
the higher power is suggested. We emphasize that the nonlinear term in (7.4a) is
needed to reach equilibration. This is the reason for our claim that the bifurcation to
reciprocal flapping flight is necessarily accompanied by departure from the Stokesian
realm of locomotion.

These general arguments have their counterpart in the venetian blind model, but
since the problem is linear in σ (see Appendix B), the only nonlinearity can come from
a modification of the model by the addition of a passive element producing drag, see
figure 11. Then if Reω > Reωc we have 〈D〉 = DB , where DB is the dimensionless drag
of the attached body. Once supercritical,

DB = C
Ref

Re2
ω

(Reω − Reωc), (7.8)

where C is a positive constant. In our dimensionless formulation, in the Stokesian
realm, body drag would be KνLUf for some positive constant K or in dimensionless
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Figure 11. Finite venetian blind locomotor dragging a body.

form KRef /Re2
ω per unit area of blind. Thus K = C(Reω − Reωc) and Ref remains

undetermined.
We must then modify the drag law by a nonlinear correction,

DB = KRef

/
Re2

ω(1 + αRef ), α > 0, (7.9)

corresponding to a deviation from Stokes’ drag determined by the quadratic term in
the flow velocity. Now the supercritical speed Uf is given by

Ref =
1

α

C

K
(Reω − Reωc), Reωc = Reωc +

K

C
. (7.10)

Thus we are led again to a bifurcation diagram which may be compared with figure 5.

8. Discussion
The fluid dynamics describing the relative motion of ‘solid’ material and fluid

divides roughly into two categories. On the one hand, the fluid can be transported
though the solid, as in Poiseuille flow through a pipe. On the other hand, the body
may move through the fluid, as in the locomotion of fish. These complementary
problems share a number of common features, including an appropriate division into
Stokesian and Eulerian realms (Lighthill 1975). The analogue of the non-reciprocal,
Stokesian swimmer is the peristaltic pump, see Jaffrin & Shapiro (1971) and Childress
(1981b). In peristalsis, waves of contraction move down a flexible pipe and are able
to transport fluid at a fixed rate determined by the frequency of the pumping cycle.
More recently, investigations of ‘valveless pumping’ at high Reynolds numbers have
demonstrated similar properties of transport in the Eulerian realm, using reciprocal
motions of the pipe wall (Jung 1999; Jung & Peskin 2001).

The models considered in the present paper involve elements of both categories
of problems. Oscillatory channel flow such as we have applied in the venetian blind
model can be usefully applied to study peristalsis, see Jaffrin & Shapiro (1971). In a
sense the venetian blind model is an attempt to introduce the simpler fluid transport
modelling into the more difficult problem of locomotion.

If the study is restricted to the Eulerian realm, symmetry-breaking bifurcations
may occur in these problems. Valveless pumping due to deformations of a tube which
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are symmetric with respect to a plane perpendicular to the tube axis can pump fluid
in either direction, depending upon the initial conditions. In forward flapping flight,
the classical linear inviscid analysis of a flapping plate of chord L, in sinusoidal
motion, leads to a drag −ρω2L3f (|σ |), where f (0) > 0, f (x) ∼ C/x, x → ∞, see
Durand (1963). Thus a thrust force on the plate, opposite to the flow direction, is
realized for flow in either direction. Symmetry-breaking bifurcations may occur for
general flapping bodies whose movements are symmetric with respect to some co-
moving plane, for motion perpendicular to the plane. This point has been emphasized
recently in the interesting context of take-off of a butterfly from a horizontal plane
by Imai & Yanagita (2001). In that problem motion is vertical and the flapping is
reciprocal and symmetric with respect to a plane through the hinge point.

In these Eulerian problems the bifurcation occurs because of the advection of
vorticity relative to the body, and so is related to the bifurcation we study here. On
the other hand the bifurcation with respect to Reω involves a competition between
advection and diffusion, and there is no special assumption regarding the fore–aft
symmetry of the body or the motion.

The variation with Reynolds number of the thrust achieved in flapping flight is of
some theoretical interest because of the role of viscosity in the process, even when
the Reynolds number is arbitrarily large. According to classical inviscid theories of
lift (and thrust) developed by an airfoil (see e.g. Batchelor 1967, ch. 6 and Lighthill
1975), the leading and trailing edges of the foil are assigned distinctly different roles in
determining circulation. In particular the Kutta–Joukowsky condition is imposed at a
sharp trailing edge, to ensure that the inviscid solution has no strong singularity there.
This leads to a smooth flow off the trailing edge, approximating what is observed. This
condition on the inviscid theory is intended to reflect the action of viscous boundary
layers, which in fact develop downstream and introduce a fore–aft asymmetry into
the problem.

For edges which are not sharp, and for Reynolds numbers which are not extremely
large, there is no satisfactory theory to replace the classical Kutta–Joukowsky
condition, and as Re → 0 the distinction between fore and aft edges disappears. In the
case of flapping flight, for example the up-and-down movement in two dimensions of a
flat plate aligned parallel to the horizontal free stream, vorticity is generated and shed
from both edges. The vorticity is shed predominately from the downstream edge at
large Re, and is diffused equally from both edges at small Re. Since the configuration
of shed vorticity is ultimately responsible for the instantaneous forces experienced by
the foil, the evolution of this vorticity field must ultimately account for a transitional
Reynolds number of the kind we study here. Various simple explanations may be
devised for recovery of thrust in particular situations. For example, a flapping flat
plate produces on the upstroke a symmetric pair of shed vortices in the absence of
a wind. A wind carries these vortices downstream, allowing the upstream vortex to
create a viscous thrust on the lower surface before another pair of vortices of opposite
sign is created on the downstroke. A great variety of mechanisms is possible from
more elaborate movements.

Thus the linear instability associated with bifurcation to flapping flight must
ultimately be understood in terms of the infinitesimal displacements of the vorticity
field created by the flapping wings, when the body is moved slightly through the fluid.
The saturation at constant speed of locomotion must similarly be accounted for by
large displacements of the shed vorticity over a flapping cycle.

The empirical observations and theoretical calculations described in this paper
demonstrate that larval stages of Clione antarctica experience a critical value of
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Re based upon body length in the range of 5–20. Results of the venetian blind
model support the conjecture that ‘body slapping’ contributes substantially to the
locomotion of Clione. Wing–body interactions are often neglected in the study of
flapping flight, but are reminiscent of the contralateral wing effects in the ‘clap
and fling’ used by some insects at higher Reynolds numbers, see Lighthill (1975)
and Dudley (2000). Numerical evidence suggests that an isolated flat-plate wing will
have a critical value of Re in the range of 5–20, based upon chord length, but
clearly dependent upon oscillatory amplitude and frequency. Reynolds numbers of
the wing chord for much larger Clione with both absolutely and relatively larger wings
typically exceed those of the ascending body by a factor of 2–4 (unpublished data),
but the possible role of non-reciprocal wing kinematics, dorsoventral morphological
asymmetries, ciliary contributions, and body interactions must be kept in mind in such
comparisons. Nonetheless, these results suggest that morphological transformation of
the locomotor apparatus is mandated for all taxa, vertebrate or invertebrate, that
ontogentically transit this range of Reynolds numbers. Metamorphosis, in particular,
might be expected to occur within this range in many taxa. For Clione specifically,
the facultative use by individuals of wings to effect locomotion nicely exemplifies this
functional dichotomy imposed by fluid mechanical constraints.

For flapping movements of a more general kind, not strictly reciprocal, the
crossover from cilia to flapping may depend upon the relative power requirements
and efficiencies of the two modes. We can estimate that in the lower end of the
intermediate Reynolds number range 5–20, the force exerted by a wing is ∼νωL2 and
so the power required for flapping is ∼νω2L3. On the other hand the drag of the
organism is ∼νUL, and the work done by the drag force is ∼νU 2L so an efficiency is
given by the ratio of the latter to the former, ∼σ 2. The rapid rise of σ as Reynolds
number falls below the intermediate range, shown in figure 4, suggests that flapping
can be considered ineffective below Re ≈ 5.

In summary, we have attempted in this paper to explain observations of bimodal
swimming of a pteropod mollusc in terms of the existence of a critical Reynolds
number for flapping flight. Below this critical number, the flapping mode is ineffective
and mechanisms appropriate to the Stokesian realm, such as the ciliary propulsion of
Clione antarctica, must prevail. Above the critical Reynolds number, locomotion by
flapping is realized, given a suitable initial ‘push’. The equilibrium velocity in flapping
flight is then determined by nonlinear processes. The resulting fluid dynamics should
then move abruptly toward the high Reynolds number or Eulerian realm.

Although the transition from ciliary to flapping locomotion in Clione antarctica is
not especially dramatic at the Reynolds numbers of our observations, the implications
of the bifurcation to reciprocal flapping flight may deserve further study in the
evolutionary context of natural locomotion. We conjecture that the biological record
generally might reflect the bifurcation discussed here, if an (Reω, Ref ) plot obtained
for many species yields values in the range 1 <Reω < 100. Reciprocal flapping brings
into play the advection of vorticity, as an alternative to its diffusion, leading ultimately
to the larger speeds and body sizes we associate with flying and swimming in nature.

We thank the staff at McMurdo Station, Antarctica, for their support and
encouragement. We are indebted to Jane Wang for carrying out the preliminary
numerical calculations reported in § 6, and for allowing their inclusion here. Part of
the research reported in this paper was supported by the National Science Foundation
under KDI grant DMS-9980069 at New York University. The field work in Antarctica
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Appendix A. A classical drag formula by unsteady analysis
In this Appendix we take the reference velocity to be the cylinder velocity U , so

that σ = 1 and ε = Re−1 in (4.1).
We compute, for small r and large t ,

I (x, y, t) ≡
∫ t

0

χyy(x − t + τ, y, t − τ ). (A 1)

But χxx + χyy = exp[−r2/(4εt)]/(4πεt) and

χxx(x − t + τ, y, t − τ ) =
∂

∂τ
χx(x − t + τ, y, t − τ ) + χxt (x − t + τ, t, t − τ ). (A 2)

Thus

I = χx(x − t, y, t) − χx(x, y, 0) +

∫ t

0

1

4πε(t − τ )
exp

[
− (x − t + τ )2 + y2

4ε(t − τ )

]
dτ

+

∫ t

0

x − t + τ

8πε(t − τ )2
exp

[
− (x − t + τ )2 + y2

4ε(t − τ )

]
dτ.

= χx(x − t, y, t) − χx(x, y, 0) +

∫ t

0

1

8πε(t − τ )
exp

[
− (x − t + τ )2 + y2

4ε(t − τ )

]
dτ

+

∫ t

0

x

8πε(t − τ )2
exp

[
− (x − t + τ )2 + y2

4ε(t − τ )

]
dτ. (A 3)

Now χx(x − t, y, t) vanishes as t → ∞ and −χx(x, y, 0) = −x/(2πr2). Letting r2 =
a2 � 1 and averaging the term in x2 over the circle r = a, an operation we indicate
by AV E (so as to apply Faxén’s law), we obtain

AVE

∫ t

0

x

8πε(t − τ )2
exp

[
− (x − t + τ )2 + y2

4ε(t − τ )

]
dτ ∼ x

2πr2
+

1

8πε
+ o(1) (A 4)

as a → 0 and t → ∞. Also∫ t

0

1

8πε(t − τ )
exp

[
− (x − t + τ )2 + y2

4ε(t − τ )

]
dτ ∼ − 1

4πε

(
γ + log

(
a

4ε

))
+ o(1). (A 5)

We note that we can get these results by dividing the integral

I (a) ≡
∫ ∞

0

1

8πεu
exp

(
− 1

4ε
[u + a2/u]

)
du (A 6)

into integrals from 0 to a and a to ∞. This leads to two equal integrals whose value
may be compared with an exponential integral. This comparison uses∫ ∞

1

[
1√

z2 − 1
− 1

z

]
dz = ln 2. (A 7)

Finally, we can use 1
2
a dI/da to compute the other integral appearing once the average

is taken.
Thus we get

AV E(u) ∼ 1

4πε

[
1

2
− γ − log

(
a

4ε

)]
+ o(a), (A 8)
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which is the classical result giving, for a circular cylinder for a � ε,

CD ≈ 4πε
1
2

− γ − log (a/4ε)
, (A 9)

see Lamb (1945).

Appendix B. The channel expansion
Since the condition δ2Reω � 1 allows a treatment as viscous channel flow, we may

assume that in the domain |y| � Y (t) the velocity will have the form

u = [xf (y, t, Reω) + g(y, t, Reω)], v = h(y, t, Reω), (B 1a)

p = 1
2
x2Γ (t) − Πx + P (y, t, Reω), (B 1b)

where Π (t) is a function of time to be determined after the channel flow has been
obtained. We require that f, g be even in y, that h be odd in y, and that

f (Y, t) = g(Y, t) = 0, h(Y, t) = Ẏ ≡ dY

dt
. (B 2)

The equations to be satisfied by g, h are then seen to be

gyy + Π = Reω[gt − hyg + hgy], hyyy + Γ = −Reω

[
hty − h2

y + hhyy

]
, (B 3)

with
f = −hy, Reω[ht + hhy] + Py − hyy = 0, (B 4)

the latter being equations determining f and P (y, t) up to an unimportant function
of time. Note that the pressure term quadratic in x, together with f, h, are associated
with the symmetric ‘squeeze flow’ due to the oscillation of the walls, g and Π with
an oscillating unidirectional oscillatory Poiseuille flow and its interaction with the
squeeze flow.

We introduce η = y/Y (t) as a new independent variable, together with the new
functions

F (η, t) = f (y, t), G(η, t) = g(y, t), H (η, t) = h(y, t). (B 5)
The equations for G, H are then

1

Y 2
Gηη + Π = Reω

[
Gt − Ẏ

Y
ηGη − 1

Y
(GHη − HGη)

]
, (B 6a)

Y −3Hηηη + Γ = Reω

[
1

Y
Hηt − Ẏ

Y 2
(Hη + ηHηη) − 1

Y 2

(
H 2

η − HHηη

)]
. (B 6b)

The boundary conditions at η = 0, 1 to be imposed on G, H are then

Gη(0) = H (0) = Hηη(0) = G(1) = Hη(1) = 0, H (1) = Ẏ . (B 7)

These six conditions uniquely determine G, H, Γ .
The force on a slat is given by

D(t) =
1

Reω

[
− 1

Y (t)
Gη(1, t) +

1

Y (t + 1/2)
Gη(−1, t + 1/2)

]
, (B 8)

there being no contribution from F since the component of u is odd in x.
We seek to solve (B 6) subject to (B 7) as a power series:

(G, H, Γ ) =

∞∑
k=0

Rek
ω(Gk, Hk, Γk)(y, t). (B 9)
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After inserting the power series (B 9) into (B 6), we see from the boundary conditions
(B 7) that

Γ0 = 3Ẏ Y −3, G0 = 1
2
ΠY 2(1 − η2), H0 = 3

2
Ẏ (η − η3/3). (B 10)

The first-order terms, of order Reω, satisfy

(G1)ηη = 1
2
Π̇Y 4(1 − η2) + 1

4
ΠY 3Ẏ (1 − η4), (B 11a)

(H1)ηηη + Y 3Γ1 = 3
2
Y 2Ÿ (1 − η2) − 3

4
Y Ẏ 2(5 − 6η2 + η4). (B 11b)

Using the boundary conditions we then obtain

G1 = 1
24

Π̇Y 4(6η2 − η4 − 5) + 1
8
ΠẎY 3

(
η2 − 1

15
η6 − 14

15

)
, (B 12a)

H1 = − 1
6
Y 3Γ1η

3 + 3
2
Y 2Ÿ

(
1
6
η3 − 1

60
η5

)
− 3

4
Y Ẏ 2

(
5
6
η3 − 1

10
η5 + 1

210
η7

)
+ C1η, (B 12b)

Γ1 =
6

5

Y 2Ÿ

Y 3
− 102

35

Y Ẏ 2

Y 3
, C1 = − 1

40
Y 2Ÿ +

19

280
Y Ẏ 2. (B 12c)

The terms of second order satisfy

(G2)ηη ≡ g2 = Y 2(G1)t − Y Ẏη(G1)η − Y [G0(H1)η

+ G1(H0)η − H0(G1)η − H1(G0)η], (B 13a)

(H2)ηηη + Y 3Γ1 ≡ h2 = Y 2(H1)ηt − Y Ẏ [(H1)η + η(H1)ηη]

− Y [2(H0)η(H1)η − H0(H1)ηη − H1(H0)ηη]. (B 13b)

With the help of the Symbolic Math Toolbox of MATLAB, we find

g2 =
1

280
Ẏ 2ΠY 4η8 +

((
−11

240
ŸΠ +

1

80
Ẏ Π̇

)
Y 5 +

7

80
Ẏ 2ΠY 4

)
η6 +

(
− 1

24
Π̈Y 6

+

(
7

80
ŸΠ − 1

16
Ẏ Π̇

)
Y 5 − 109

560
Ẏ 2ΠY 4

)
η4 +

(
1

4
Π̈Y 6 +

(
1

16
ŸΠ +

11

16
Ẏ Π̇

)
Y 5

+
5

16
Ẏ 2ΠY 4

)
η2 − 5

24
Π̈Y 6 +

(
− 5

48
ŸΠ − 51

80
Ẏ Π̇

)
Y 5 − 117

560
Ẏ 2ΠY 4. (B 14)

The term G2 is then given by

G2 =
1

25200
Ẏ 2ΠY 4η10 +

((
1

4480
Ẏ Π̇ − 11

13440
ŸΠ

)
Y 5 +

1

640
Ẏ 2ΠY 4

)
η8

+

(
− 1

720
Π̈Y 6 − 109

16800
Ẏ 2ΠY 4 +

(
7

2400
ŸΠ − 1

480
Ẏ Π̇

)
Y 5

)
η6

+

(
5

192
Ẏ 2ΠY 4 +

1

48
Π̈Y 6 +

(
11

192
Ẏ Π̇ +

1

192
ŸΠ

)
Y 5

)
η4

+

(
− 117

1120
Ẏ 2ΠY 4 − 5

48
Π̈Y 6 +

(
− 51

160
Ẏ Π̇ − 5

96
ŸΠ

)
Y 5

)
η2

+
61

720
Π̈Y 6 +

3359

40320
Ẏ 2ΠY 4 +

(
1003

22400
ŸΠ +

3539

13440
Ẏ Π̇

)
Y 5. (B 15)
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For H we similarly find

h2 =
3

280
Ẏ 3Y 2η8 +

((
− 7

20
Ẏ Ÿ +

1

4
Ẏ 2

)
Y 3 +

3

20
Ẏ 3Y 2

)
η6

+

(
− 1

40
Y (3)Y 4 +

(
− 9

10
Ẏ 2 +

31

40
Ẏ Ÿ − Ẏ

(
−1

8
Ÿ − 1

2
Ẏ

))
Y 3 − 153

140
Ẏ 3Y 2

)
η4

+

(
3

20
Y (3)Y 4 +

(
−69

70
Ẏ Ÿ +

9

20
Ẏ 2 − Ẏ

(
3

20
Ÿ +

3

10
Ẏ

))
Y 3 +

117

140
Ẏ 3Y 2

)
η2

− 1

4
Y (3)Y 4 +

13

70
Ẏ Ÿ Y 3 − 57

280
Ẏ 3Y 2, (B 16)

H2 =
1

92400
Ẏ 3Y 2η11 +

((
− 1

1440
Ẏ Ÿ +

1

2016
Ẏ 2

)
Y 3 +

1

3360
Ẏ 3Y 2

)
η9

+

(
− 1

8400
Y (3)Y 4 − 51

9800
Ẏ 3Y 2 +

(
−Ẏ

(
− 1

420
Ẏ − 1

1680
Ÿ

)

+
31

8400
Ẏ Ÿ − 3

700
Ẏ 2)Y 3

)
η7 +

(
39

2800
Ẏ 3Y 2 +

1

400
Y (3)Y 4 +

(
− 23

1400
Ẏ Ÿ +

3

400
Ẏ 2

− Ẏ

(
1

400
Ÿ +

1

200
Ẏ

))
Y 3

)
η5 +

(
− 349

25872
Ẏ 3Y 2 − 13

2800
Y (3)Y 4

+

(
181

6300
Ẏ Ÿ − 13

3150
Ẏ 2 +

1

2
Ẏ

(
1

120
Ẏ − 1

240
Ÿ

)
− 1

2
Ẏ

(
11

4200
Ẏ − 19

8400
Ÿ

))
Y 3

)
η3

+

(
19

8400
Y (3)Y 4 +

1153

258720
Ẏ 3Y 2 +

(
− 187

16800
Ẏ Ÿ +

1

2400
Ẏ 2 − 1

2
Ẏ

(
1

120
Ẏ − 1

240
Ÿ

)

+
3

2
Ẏ

(
11

4200
Ẏ − 19

8400
Ÿ

))
Y 3)η. (B 17)

Recalling the mass balance δσ = q(t) + q(t + 1/2), we have

q(t) = q0 + Reωq1 + Re2
ωq2 + . . . . (B 18)

We obtain from the results given above,

q0 = Ẏ + 1
3
Y 3Π, (B 19a)

q1 = − 2

15
Π̇Y 5 − 8

105
ΠẎY 4, (B 19b)

q2 =
17

315
Π̈Y 7 +

(
53

315
Ẏ Π̇ +

136

4725
ŸΠ

)
Y 6 +

6421

121275
Ẏ 2ΠY 5 (B 19c)

Note that the term Ẏ in (B 19a) will not contribute to q(t) since Ẏ (t +1/2) = −Ẏ (t).
This is a crucial aspect of mass balance, which results from the mass flux ejected from
a squeeze flow in one channel re-entering an adjacent, expanding channel.

The conservation of x-momentum can be similarly considered. Momentum
conservation (again neglecting forces associated with edge effects) implies the two
conditions

2〈Y 〉σ 2 = S−(t) + S−
(
t + 1

2

)
≡ Min,

S− = Y

∫ 1

0

[(
G + 1

2Y
Hη

)2
+ Re−1

ω

(
1
2
Π + 1

8
Γ + P

)]
dη.


 (B 20a)
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2〈Y 〉σ 2 + p−∞ = S+(t) + S+

(
t + 1

2

)
≡ Mout,

S+ = Y

∫ 1

0

[(
G − 1

2Y
Hη

)2 − Re−1
ω

(
1
2
Π − 1

8
Γ − P

)]
dη.


 (B 20b)

The difference between Min and Mout must equal the rate of change of channel
momentum (which vanishes upon integration over the channel area, because it is
proportional to the mass flux), plus D(t), yielding the relation δp−∞ = −D(t). The
time dependence of the downstream pressure is a peculiarity of our dealing with a
venetian blind which is infinite in y, z. The blind acts as an ‘actuator plane’ and the
instantaneous drag can be balanced only by a pressure difference across the plane.

Thus the momentum balance at each edge provides a way of computing the pressure
at the channel edges, but momentum balance provides no new constraint on Π . Since
the mass conservation involves simultaneously q(t) and q(t + 1/2), q(t) and therefore
Π remain undetermined.

Consider now the use of the outflow principle and the assumption δReω � 1,
leading to the flux function (5.11). We may now solve

q − Ẏ = −Ẏ + q0 + Reωq1 + Re2
ωq2 + O

(
Re3

ω

)
(B 21)

for Π by inversion of the series. This yields

Π = Π0 + ReωΠ1 + Re2
ωΠ2 + O

(
Re3

ω

)
, (B 22a)

Π0 = 3Y −3q, Π1 = 3Y −3

[
2

15
Π̇0Y

5 +
8

105
Π0Ẏ Y 4

]
, (B 22b)

Π2 = 3Y −3

[
2

15
Π̇1Y

5 +
8

105
Π1Ẏ Y 4 − 17

315
Π̈0Y

7

−
(

53

315
Ẏ Π̇0 − 136

4725
ŸΠ0

)
Y 6 − 6421

121275
Ẏ 2Π0Y

5

]
. (B 22c)

To calculate now the drag D(t) per unit length on one slat, recall that

D(t) =
1

Reω

[
− 1

Y (t)
Gη(1, t) +

1

Y (t + 1/2)
Gη(−1, t + 1/2)

]

≡ 1

Reω

(
D0 + ReωD1 + Re2

ωD2 + . . .
)
. (B 23)

From (B 10) and (B 12a) we obtain

D0 = ΠY (t) + ΠY (t + 1/2), (B 24a)

D1 = −
[

1
3
Π̇Y 3(t) + 1

5
Ẏ Y 2Π

]
(t) −

[
1
3
Π̇Y 3(t) + 1

5
Ẏ Y 2Π

]
(t + 1/2), (B 24b)

D2 =
2

15
Π̈Y 5 +

(
38

525
ŸΠ +

44

105
Ẏ Π̇

)
Y 4 +

206

1575
Ẏ 2ΠY 3. (B 24c)

Inserting the functions Πi from (B 22), and then averaging over time, we obtain (5.27).
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